The paper presents methods of eigenvalue localisation of regular matrix polynomials, in particular, stability of matrix polynomials is investigated. For this aim a stronger notion of hyperstability is introduced and widely discussed. Matrix versions of the Gauss-Lucas theorem and Sz\'asz inequality are shown. Further, tools for investigating (hyper)stability by multivariate complex analysis methods are provided. Several second- and third-order matrix polynomials with particular semi-definiteness assumptions on coefficients are shown to be stable.
翻译:本文介绍了常规矩阵多元复合分析的精精精度定位方法,特别是调查矩阵多元复合体稳定性的方法,为此引入并广泛讨论更强烈的超常性概念,并展示了高斯-卢卡斯定理和Sz\'asz不平等的矩阵版本,此外,还提供了多变量复杂分析方法调查(超常性)的工具。若干第二和第三级矩阵矩阵多元性,以及特定关于系数的半确定性假设,都显示是稳定的。