We address the enumeration of coprime polynomial pairs over $\F_2$ where both polynomials have a nonzero constant term, motivated by the construction of orthogonal Latin squares via cellular automata. To this end, we leverage on Benjamin and Bennett's bijection between coprime and non-coprime pairs, which is based on the sequences of quotients visited by dilcuE's algorithm (i.e. Euclid's algorithm ran backward). This allows us to break our analysis of the quotients in three parts, namely the enumeration and count of: (1) sequences of constant terms, (2) sequences of degrees, and (3) sequences of intermediate terms. For (1), we show that the sequences of constant terms form a regular language, and use classic results from algebraic language theory to count them. Concerning (2), we remark that the sequences of degrees correspond to compositions of natural numbers, which have a simple combinatorial description. Finally, we show that for (3) the intermediate terms can be freely chosen. Putting these three obeservations together, we devise a combinatorial algorithm to enumerate all such coprime pairs of a given degree, and present an alternative derivation of their counting formula.
翻译:我们处理多式混合对夫妇在$\F_2美元之上的查点。 在这两个多式对夫妇的查点中,两个多式对夫妇都有非零不变的不变期,其动机是通过细胞自动成形构建正正弦拉丁方形。 为此,我们利用Benjamin和Bennett对夫妇的双向截线,这是基于 dilcuE 算法( 即 Euclid 的算法向后运行) 访问的商数序列。 这让我们可以打破我们对三个部分的商数的分析, 这三个部分的查点和计数:(1) 常数序列, (2) 度序列, (3) 中间术语序列。 关于(1), 我们显示, 常态术语的序列形成一种常规语言, 并使用代数语言理论的经典结果来计算它们。 关于(2), 我们说, 度序列与自然数字的构成相匹配, 具有简单的组合描述。 最后, 我们显示, 对于三个中间术语可以自由选择, 即:(1) 不变术语的序列, (2) 、 (2) 以及中间值排序的排序, 我们设计出所有组合式的组合式矩阵。