We study the distribution of singular values of product of random matrices pertinent to the analysis of deep neural networks. The matrices resemble the product of the sample covariance matrices, however, an important difference is that the population covariance matrices assumed to be non-random or random but independent of the random data matrix in statistics and random matrix theory are now certain functions of random data matrices (synaptic weight matrices in the deep neural network terminology). The problem has been treated in recent work [25, 13] by using the techniques of free probability theory. Since, however, free probability theory deals with population covariance matrices which are independent of the data matrices, its applicability has to be justified. The justification has been given in [22] for Gaussian data matrices with independent entries, a standard analytical model of free probability, by using a version of the techniques of random matrix theory. In this paper we use another, more streamlined, version of the techniques of random matrix theory to generalize the results of [22] to the case where the entries of the synaptic weight matrices are just independent identically distributed random variables with zero mean and finite fourth moment. This, in particular, extends the property of the so-called macroscopic universality on the considered random matrices.


翻译:我们研究了与深神经网络分析相关的随机矩阵产品产品的单值分布情况。这些矩阵类似于样本共变矩阵的产物,然而,一个重要的区别是,在统计和随机矩阵理论中,人口共变矩阵假定为非随机或随机的,但独立于随机数据矩阵,在统计和随机矩阵理论中,人口共变矩阵假定为随机数据矩阵的某些功能(深神经网络术语中的合成权重矩阵)。在最近的工作中,使用自由概率理论技术处理了这一问题[25、13]。然而,由于自由概率理论涉及独立于数据矩阵的人口共变矩阵,因此其适用性是有道理的。在[22]中,对带有独立条目的高斯数据矩阵提供了理由,这是一个自由概率的标准分析模型,使用了随机矩阵理论技术的版本。在本文中,我们使用另一个更简便的随机矩阵理论技术版本,将[22]的结果归纳到一个案例,即合成权重矩阵的条目是完全独立的、与零平均值和定数第四时刻的随机变量。这特别扩大了所考虑的宏观矩阵的普遍性。

0
下载
关闭预览

相关内容

随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月23日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关VIP内容
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员