Vision Transformers (ViT) have made many breakthroughs in computer vision tasks. However, considerable redundancy arises in the spatial dimension of an input image, leading to massive computational costs. Therefore, We propose a coarse-to-fine vision transformer (CF-ViT) to relieve computational burden while retaining performance in this paper. Our proposed CF-ViT is motivated by two important observations in modern ViT models: (1) The coarse-grained patch splitting can locate informative regions of an input image. (2) Most images can be well recognized by a ViT model in a small-length token sequence. Therefore, our CF-ViT implements network inference in a two-stage manner. At coarse inference stage, an input image is split into a small-length patch sequence for a computationally economical classification. If not well recognized, the informative patches are identified and further re-split in a fine-grained granularity. Extensive experiments demonstrate the efficacy of our CF-ViT. For example, without any compromise on performance, CF-ViT reduces 53% FLOPs of LV-ViT, and also achieves 2.01x throughput.


翻译:计算机视觉变异器(VIT)在计算机视觉任务中取得了许多突破,然而,在输入图像的空间维度方面出现了大量冗余,导致大量计算成本。因此,我们建议使用粗到粗的视觉变异器(CF-VIT)来减轻计算负担,同时保留本文中的性能。我们提议的CF-ViT的动机是现代ViT模型中的两项重要观察:(1) 粗微的分块可以定位输入图像的信息区。(2) 多数图像都可以在微小的象征性序列中被ViT模型充分识别。因此,我们的CF-ViT以两阶段的方式执行网络推断。在粗略的推论阶段,输入图像被分成成一个小的计算经济分类的小型补位序列。如果没有很好地认识到,则会发现信息区间隙,并在细微的颗粒中进一步重新插入。广泛的实验表明我们的CF-VT的功效。例如,在性能方面没有任何妥协的情况下,CF-VT会降低53%的FLOPs。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年7月30日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年7月30日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员