This paper proposes two novel knowledge transfer techniques for class-incremental learning (CIL). First, we propose data-free generative replay (DF-GR) to mitigate catastrophic forgetting in CIL by using synthetic samples from a generative model. In the conventional generative replay, the generative model is pre-trained for old data and shared in extra memory for later incremental learning. In our proposed DF-GR, we train a generative model from scratch without using any training data, based on the pre-trained classification model from the past, so we curtail the cost of sharing pre-trained generative models. Second, we introduce dual-teacher information distillation (DT-ID) for knowledge distillation from two teachers to one student. In CIL, we use DT-ID to learn new classes incrementally based on the pre-trained model for old classes and another model (pre-)trained on the new data for new classes. We implemented the proposed schemes on top of one of the state-of-the-art CIL methods and showed the performance improvement on CIFAR-100 and ImageNet datasets.
翻译:本文提议了两种新型知识转让技术,用于课堂入门学习。首先,我们提出无数据基因回放(DF-GR),通过使用基因模型的合成样本,减轻CIL的灾难性遗忘。在传统的基因回放中,基因模型先受过老数据训练,然后在额外记忆中分享,以便以后的增量学习。在我们提议的DF-GR中,我们从零开始培训一个不使用任何培训数据的基因化模型,根据过去经过培训的分类模型,我们减少分享经过培训的基因化模型的费用。第二,我们采用双重教师信息蒸馏(DTID),以便从两名教师蒸馏到一名学生的知识。在CIL,我们使用D-ID,根据经过预先培训的老班模型和另一个关于新班新数据的培训模式(预),逐步学习新班。我们实施了拟议的CFAR-100和图像网络数据集中的一项先进方法,并展示了业绩改进。