This paper considers optimization proxies for Optimal Power Flow (OPF), i.e., machine-learning models that approximate the input/output relationship of OPF. Recent work has focused on showing that such proxies can be of high fidelity. However, their training requires significant data, each instance necessitating the (offline) solving of an OPF for a sample of the input distribution. To meet the requirements of market-clearing applications, this paper proposes Active Bucketized Sampling (ABS), a novel active learning framework that aims at training the best possible OPF proxy within a time limit. ABS partitions the input distribution into buckets and uses an acquisition function to determine where to sample next. It relies on an adaptive learning rate that increases and decreases over time. Experimental results demonstrate the benefits of ABS.
翻译:本文件考虑了最佳电力流动的最佳替代物(OPF),即近似 OPF投入/产出关系的机器学习模型。最近的工作重点是显示这种代理物可能具有高度忠诚性。然而,他们的培训需要大量数据,每个案例都需要(离线)解决 OPF 以作为投入分布样本。为满足市场清理应用的要求,本文件提议了积极的Bucketized抽样(ABS),这是一个新的积极学习框架,目的是在一定的时限内培训尽可能最佳的 OPF代理物。ABS将投入分配分成桶,并使用获取功能来确定下一个样本的位置。它依靠适应性学习率,随着时间的推移增加和减少。实验结果显示了ABS的好处。