Traditionally, social choice theory has only been applicable to choices among a few predetermined alternatives but not to more complex decisions such as collectively selecting a textual statement. We introduce generative social choice, a framework that combines the mathematical rigor of social choice theory with the capability of large language models to generate text and extrapolate preferences. This framework divides the design of AI-augmented democratic processes into two components: first, proving that the process satisfies rigorous representation guarantees when given access to oracle queries; second, empirically validating that these queries can be approximately implemented using a large language model. We apply this framework to the problem of generating a slate of statements that is representative of opinions expressed as free-form text; specifically, we develop a democratic process with representation guarantees and use this process to represent the opinions of participants in a survey about chatbot personalization. We find that 93 out of 100 participants feel "mostly" or "perfectly" represented by the slate of five statements we extracted.
翻译:暂无翻译