This work seeks to improve the generalization and robustness of existing neural networks for 3D point clouds by inducing group equivariance under general group transformations. The main challenge when designing equivariant models for point clouds is how to trade-off the performance of the model and the complexity. Existing equivariant models are either too complicate to implement or very high complexity. The main aim of this study is to build a general procedure to introduce group equivariant property to SOTA models for 3D point clouds. The group equivariant models built form our procedure are simple to implement, less complexity in comparison with the existing ones, and they preserve the strengths of the original SOTA backbone. From the results of the experiments on object classification, it is shown that our methods are superior to other group equivariant models in performance and complexity. Moreover, our method also helps to improve the mIoU of semantic segmentation models. Overall, by using a combination of only-finite-rotation equivariance and augmentation, our models can outperform existing full $SO(3)$-equivariance models with much cheaper complexity and GPU memory. The proposed procedure is general and forms a fundamental approach to group equivariant neural networks. We believe that it can be easily adapted to other SOTA models in the future.
翻译:这项工作力求提高3D点云现有神经网络的通用性和稳健性,在一般组群变换中引导群体变异性,从而提高3D点云的现有神经网络的通用性和稳健性。在为点云设计等异性模型时,主要挑战是如何权衡模型的性能和复杂性。现有的等异性模型要么过于复杂,无法实施,要么非常复杂。本研究的主要目的是建立一个一般程序,为3D点云SOTA模型引入群体等异性属性。构建的群异性模型构成我们的程序简单易执行,比现有的程序更不复杂,它们保存了原SOTA主干网的优势。从对象分类实验的结果中可以看出,我们的方法优于业绩和复杂性的其他组类变模型。此外,我们的方法还有助于改进语系分解模型的 mIOU。总体而言,通过将仅有最精确的调异性和增强性模型组合,我们的模式可以超越现有的完全的 $SO(3)-Q-Q-Q-equient 模型,它们保存原始SO-stal estal resmetal resmal ropal rocal rocal routal acal acal routegrout the the Supal rout theslupal acal appol lapal beslupal besluplupal beslupal besluplupal be sual a sual a routslupal appol beslupal a routal acess roto roto rotodal rotodal rotodal rotodal rodal_,我们建议,我们建议程序可以改成成为一种普通和Gsal acessal rocessal acessal acessal rocal rocal rocessal rocessal rocessal rocessal rocessal rocal rocal atodal atodal atodal rodal_,我们提出一个普通和Gstodal atodal atodal 和GTal atodal atoal a