This work introduces a diffusion model for molecule generation in 3D that is equivariant to Euclidean transformations. Our E(3) Equivariant Diffusion Model (EDM) learns to denoise a diffusion process with an equivariant network that jointly operates on both continuous (atom coordinates) and categorical features (atom types). In addition, we provide a probabilistic analysis which admits likelihood computation of molecules using our model. Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
翻译:这项工作引入了一种3D分子生成的扩散模型,这种模型与欧洲立方体变异具有等同性。我们的 E(3) 等异性扩散模型(EDM)学会了用一个等异性网络封闭一个扩散过程,该等异性网络在连续(原子坐标)和绝对特征(原子类型)上共同运行。此外,我们提供了一种概率分析,承认利用我们的模型对分子进行可能的计算。实验性地说,拟议方法大大优于以前的3D分子变异方法,在所生成样品的质量和培训时间的效率方面。