This research delves into sophisticated neural network frameworks like Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory Networks (LSTMs), and Deep Belief Networks (DBNs) for improved analysis of ECG signals via Field Programmable Gate Arrays (FPGAs). The MIT-BIH Arrhythmia Database serves as the foundation for training and evaluating our models, with added Gaussian noise to heighten the algorithms' resilience. The developed architectures incorporate various layers for specific processing and categorization functions, employing strategies such as the EarlyStopping callback and Dropout layer to prevent overfitting. Additionally, this paper details the creation of a tailored Tensor Compute Unit (TCU) accelerator for the PYNQ Z1 platform. It provides a thorough methodology for implementing FPGA-based machine learning, encompassing the configuration of the Tensil toolchain in Docker, selection of architectures, PS-PL configuration, and the compilation and deployment of models. By evaluating performance indicators like latency and throughput, we showcase the efficacy of FPGAs in advanced biomedical computing. This study ultimately serves as a comprehensive guide to optimizing neural network operations on FPGAs across various fields.
翻译:暂无翻译