In this paper, we introduce the concept of isotropic Hilbert-valued spherical random field, thus extending the notion of isotropic spherical random field to an infinite-dimensional setting. We then establish a spectral representation theorem and a functional Schoenberg's theorem. Following some key results established for the real-valued case, we prove consistency and quantitative central limit theorem for the sample power spectrum operators in the high-frequency regime.
翻译:在本文中,我们引入了以异热带赫伯特为值的球体随机场的概念,从而将异热带球体随机场的概念扩大到一个无限的多维环境。然后,我们建立了一个光谱代表理论和功能性Schoenberg的理论。根据为实际价值案例确定的一些关键结果,我们证明了高频系统中的样本频谱操作员的一致性和数量中心限制。