Physico-chemical continuum battery models are typically parameterized by manual fits, relying on the individual expertise of researchers. In this article, we introduce a computer algorithm that directly utilizes the experience of battery researchers to extract information from experimental data reproducibly. We extend Bayesian Optimization (BOLFI) with Expectation Propagation (EP) to create a black-box optimizer suited for modular continuum battery models. Standard approaches compare the experimental data in its raw entirety to the model simulations. By dividing the data into physics-based features, our data-driven approach uses orders of magnitude less simulations. For validation, we process full-cell GITT measurements to characterize the diffusivities of both electrodes non-destructively. Our algorithm enables experimentators and theoreticians to investigate, verify, and record their insights. We intend this algorithm to be a tool for the accessible evaluation of experimental databases.
翻译:物理化学连续电池模型通常使用人工配方进行参数化,依靠研究人员的个人专长。在本篇文章中,我们引入了一种计算机算法,直接利用电池研究人员的经验从实验数据中提取信息,可以复制。我们推广Bayesian Optimation(BOLFI)和期望推进(EP),以创建一个适合模块连续电池模型的黑盒优化器。标准方法将实验数据原始部分与模拟模型进行对比。通过将数据分为物理特征,我们的数据驱动方法使用数量级比模拟少的顺序。为了验证,我们处理全细胞GITT测量法,以辨别两种电极的不易性。我们的算法使实验者和理论学家能够调查、核实和记录他们的洞察力。我们打算将这一算法作为一种工具,用于对实验数据库进行无障碍评估。