Variational inference is a powerful approach for approximate posterior inference. However, it is sensitive to initialization and can be subject to poor local optima. In this paper, we develop proximity variational inference (PVI). PVI is a new method for optimizing the variational objective that constrains subsequent iterates of the variational parameters to robustify the optimization path. Consequently, PVI is less sensitive to initialization and optimization quirks and finds better local optima. We demonstrate our method on three proximity statistics. We study PVI on a Bernoulli factor model and sigmoid belief network with both real and synthetic data and compare to deterministic annealing (Katahira et al., 2008). We highlight the flexibility of PVI by designing a proximity statistic for Bayesian deep learning models such as the variational autoencoder (Kingma and Welling, 2014; Rezende et al., 2014). Empirically, we show that PVI consistently finds better local optima and gives better predictive performance.
翻译:动因推断是近似次光推法的有力方法。 但是,它对于初始化十分敏感,并可能受制于当地偏差。 在本文中,我们开发了近距离差异推断(PVI) 。 PVI是优化变异目标的新方法,它限制随后变异参数的迭代,以巩固优化优化路径。 因此, PVI对初始化和优化quirks不那么敏感,发现本地的更佳选择。 我们在三种近距离统计上展示了我们的方法。 我们研究了Bernoulli系数模型和具有真实和合成数据并与确定性Annealing(Katahira等人,2008年)。 我们强调PVI的灵活性,为Bayesian深层学习模型设计了近距离统计,如变异自动电解码器(Kingma和Welling,2014年;Rezende等人,2014年)。我们生动地表明,PVI始终能找到更好的本地选择,并提供了更好的预测性表现。