Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under very weak assumptions, and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals. To elaborate, our methods take the form of confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time. CSs provide valid inference at arbitrary stopping times, incurring no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, and hence do not enjoy the aforementioned broad applicability of asymptotic confidence intervals. Our work bridges the gap by giving a definition for "asymptotic CSs", and deriving a universal asymptotic CS that requires only weak CLT-like assumptions. While the CLT approximates the distribution of a sample average by that of a Gaussian at a fixed sample size, we use strong invariance principles (stemming from the seminal 1970s work of Komlos, Major, and Tusnady) to uniformly approximate the entire sample average process by an implicit Gaussian process. We demonstrate their utility by deriving nonparametric asymptotic CSs for the average treatment effect based on doubly robust estimators in observational studies, for which no nonasymptotic methods can exist even in the fixed-time regime (due to confounding bias). These enable doubly robust causal inference that can be continuously monitored and adaptively stopped.
翻译:基于中央限值( CLT) 的置信度间隔是古典统计的基石。 尽管它们仅具有轻微有效性, 却无处不在, 因为它们允许在非常薄弱的假设下进行统计推断, 甚至在无法进行非隐含性推断的情况下, 也往往可以适用于问题。 本文引入了类似隐含性信任间隔的时间- 统一的类比。 详细地说, 我们的方法是信任序列( CS) 的形式 -- 信任间隔的顺序, 这些序列在一段时间内统一有效。 CS 提供了任意停止时间的有效推断, 对数据“ 重度” 的观察不产生任何惩罚, 因为它们允许在数据中进行“ 重度” 的“ 重度” 观察, 而不像古老的信任间隔, 要求将样本大小提前固定, 文献中现有的CS, 因而不享有上述广泛适用性信任间隔间隔。 我们的工作弥补了差距, 给出了“ 默认 CSS ” 的定义, 以及 一种通用的默认 CSS, 这只需要不脆弱的 CLT 假设 。 虽然 CLT 的直线性 的精确度间隔期, 也显示了我们 的常规 的 的常规研究 的 的 的 的, 以 的 直观 的 的 的 的 直径 的 的 直径 直径 直径 的 的 直径 的 的 直径 的 的 的 的 。