Automation of berthing maneuvers in shipping is a pressing issue as the berthing maneuver is one of the most stressful tasks seafarers undertake. Berthing control problems are often tackled via tracking a predefined trajectory or path. Maintaining a tracking error of zero under an uncertain environment is impossible; the tracking controller is nonetheless required to bring vessels close to desired berths. The tracking controller must prioritize the avoidance of tracking errors that may cause collisions with obstacles. This paper proposes a training method based on reinforcement learning for a trajectory tracking controller that reduces the probability of collisions with static obstacles. Via numerical simulations, we show that the proposed method reduces the probability of collisions during berthing maneuvers. Furthermore, this paper shows the tracking performance in a model experiment.
翻译:航运中泊位操作自动化是一个紧迫问题,因为泊位操作是海员最紧张的任务之一。 位位控制问题通常通过跟踪预定的轨迹或路径来解决。 在不确定的环境中不可能维持零位跟踪错误; 但是, 跟踪控制器必须让船只接近理想的泊位。 跟踪控制器必须优先考虑避免可能导致与障碍碰撞的跟踪错误。 本文件建议采用一种培训方法, 以强化轨迹跟踪控制器学习为基础, 降低与静态障碍碰撞的概率。 通过数字模拟, 我们显示, 拟议的方法降低了泊位操作中碰撞的概率。 此外, 本文还展示了模型实验中的跟踪性能 。