We propose and analyze a novel interactive protocol for demonstrating quantum computational advantage, which is efficiently classically verifiable. Our protocol relies upon the cryptographic hardness of trapdoor claw-free functions (TCFs). Through a surprising connection to Bell's inequality, our protocol avoids the need for an adaptive hardcore bit, with essentially no increase in the quantum circuit complexity and no extra cryptographic assumptions. Crucially, this expands the set of compatible TCFs, and we propose two new constructions: one based upon the decisional Diffie-Hellman problem and the other based upon Rabin's function, $x^2 \bmod N$. We also describe two unique features of our interactive protocol: (i) it allows one to discard so-called "garbage bits", thereby removing the need for reversibility in the quantum circuits, and (ii) there exists a natural post-selection scheme, which significantly reduces the fidelity needed to demonstrate quantum advantage. Finally, we design several efficient circuits for $x^2 \bmod N$ and describe a blueprint for their implementation on a Rydberg-atom-based quantum computer.
翻译:我们提出并分析一个新的互动协议,以展示量子计算优势,这在古典中是有效的可核实的。我们的协议依赖于陷阱门无爪功能(TCF)的加密硬度。通过与贝尔不平等的惊人联系,我们的协议避免了对适应性硬核部分的需求,而量子电路的复杂性基本上没有增加,也没有额外的加密假设。关键的是,这扩大了一套兼容的TCF,我们提出了两个新的构思:一个基于Diffie-Hellman决定问题,另一个基于Rabin的功能,$x%2\bmod N$。我们还描述了我们互动协议的两个独特特征:(一) 它允许一个人丢弃所谓的“垃圾位”,从而消除了量子电路的可逆性需求,以及(二) 存在一种自然的后选计划,这大大降低了显示量子优势所需的真实性。最后,我们为美元x%2\bmod N$设计了几条高效的电路,并描述了在一台里德贝基的计算机上实施这些电路的蓝图。