Designing private voting rules is an important and pressing problem for trustworthy democracy. In this paper, under the framework of differential privacy, we propose a novel famliy of randomized voting rules based on the well-known Condorcet method, and focus on three classes of voting rules in this family: Laplacian Condorcet method ($\CMLAP_\lambda$), exponential Condorcet method ($\CMEXP_\lambda$), and randomized response Condorcet method ($\CMRR_\lambda$), where $\lambda$ represents the level of noise. We prove that all of our rules satisfy absolute monotonicity, lexi-participation, probabilistic Pareto efficiency, approximate probabilistic Condorcet criterion, and approximate SD-strategyproofness. In addition, $\CMRR_\lambda$ satisfies (non-approximate) probabilistic Condorcet criterion, while $\CMLAP_\lambda$ and $\CMEXP_\lambda$ satisfy strong lexi-participation. Finally, we regard differential privacy as a voting axiom, and discuss its relations to other axioms.
翻译:设计私人投票规则对于值得信赖的民主来说是一个重要而紧迫的问题。 在本文中,根据不同的隐私框架,我们提出一种以众所周知的孔多塞方法为基础的随机投票规则的新流行,并侧重于这个家族的三类投票规则:拉普拉西亚孔多塞方法(CMLAP ⁇ lambda$)、指数式孔多塞方法(CMEXP ⁇ lambda$)和随机响应孔多塞方法(CMARR ⁇ lambda$),其中美元代表噪音水平。我们证明我们的所有规则都满足绝对单一性、法式参与、概率性帕雷托效率、近似概率性孔多塞特标准以及接近SDD-战略的防守性。此外, $CMAR ⁇ lambda$满足(非近似)不稳定性康多塞特标准,而$CMARP ⁇ lambda$和$CMEX ⁇ L ⁇ lambda$满足其他强的列西参与度。最后,我们把差异隐私视为一种投票关系。