We study a class of integer bilevel programs with second-order cone constraints at the upper-level and a convex-quadratic objective function and linear constraints at the lower-level. We develop disjunctive cuts (DCs) to separate bilevel-infeasible solutions using a second-order-cone-based cut-generating procedure. We propose DC separation strategies and consider several approaches for removing redundant disjunctions and normalization. Using these DCs, we propose a branch-and-cut algorithm for the problem class we study, and a cutting-plane method for the problem variant with only binary variables. We present an extensive computational study on a diverse set of instances, including instances with binary and with integer variables, and instances with a single and with multiple linking constraints. Our computational study demonstrates that the proposed enhancements of our solution approaches are effective for improving the performance. Moreover, both of our approaches outperform a state-of-the-art generic solver for mixed-integer bilevel linear programs that is able to solve a linearized version of our binary instances.
翻译:我们研究一整级双级方案,在上层有二阶锥形限制,在下层有二次二次曲线目标功能和线性限制。我们用二阶锥形割裂程序制定分离性削减(DCs),将双层不可行的解决方案分开;我们提出DC分离战略,考虑若干办法,消除多余的脱钩和正常化。我们利用这些DC,为我们研究的问题类提出分切算法,为问题变异提出一个切换计划方法,只有二进制变量。我们就一系列不同的事例提出广泛的计算研究,包括二进制和整数变量的例子,以及单一和多个关联限制的例子。我们的计算研究表明,拟议改进我们解决方案的方法对于改善绩效是有效的。此外,我们这两种办法都超越了混合内分数双级线性程序的最新通用解决方案,能够解决我们二进制实例的线性版本。