We consider incentivized exploration: a version of multi-armed bandits where the choice of arms is controlled by self-interested agents, and the algorithm can only issue recommendations. The algorithm controls the flow of information, and the information asymmetry can incentivize the agents to explore. Prior work achieves optimal regret rates up to multiplicative factors that become arbitrarily large depending on the Bayesian priors, and scale exponentially in the number of arms. A more basic problem of sampling each arm once runs into similar factors. We focus on the price of incentives: the loss in performance, broadly construed, incurred for the sake of incentive-compatibility. We prove that Thompson Sampling, a standard bandit algorithm, is incentive-compatible if initialized with sufficiently many data points. The performance loss due to incentives is therefore limited to the initial rounds when these data points are collected. The problem is largely reduced to that of sample complexity: how many rounds are needed? We address this question, providing matching upper and lower bounds and instantiating them in various corollaries. Typically, the optimal sample complexity is polynomial in the number of arms and exponential in the "strength of beliefs".


翻译:我们考虑有激励性的探索:多武装强盗的版本,其中武器的选择由自利的代理人控制,而算法只能发布建议。算法控制信息的流动,信息不对称可以激励代理人探索。先前的工作达到最佳的遗憾率,最多可达到因巴伊西亚前科而任意扩大的倍增性因素,且武器数量成倍增加。每个手臂取样的更基本问题曾经有类似的因素。我们注重奖励的代价:为奖励兼容性而广泛解释的性能损失。我们证明,标准强势算法Thompson 抽样法如果以足够多的数据点初始化,则具有激励兼容性。因此,由于奖励而导致的业绩损失限于收集这些数据点时的最初几轮。问题基本上减少到抽样复杂性:需要多少轮?我们讨论这一问题,提供上下几轮的尺寸,并在各种滚动器库中立即进行。一般情况下,最佳的抽样复杂度是武器数量上的多元性和“指数性”。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员