We study contextual search, a generalization of binary search in higher dimensions, which captures settings such as feature-based dynamic pricing. Standard game-theoretic formulations of this problem assume that agents act in accordance with a specific behavioral model. In practice, however, some agents may not subscribe to the dominant behavioral model or may act in ways that seem to be arbitrarily irrational. Existing algorithms heavily depend on the behavioral model being (approximately) accurate for all agents and have poor performance in the presence of even a few such arbitrarily irrational agents. We initiate the study of contextual search when some of the agents can behave in ways inconsistent with the underlying behavioral model. In particular, we provide two algorithms, one based on multidimensional binary search methods and one based on gradient descent. We show that these algorithms attain near-optimal regret guarantees in the absence of irrational agents and their performance degrades gracefully with the number of such agents, providing the first results for contextual search in any adversarial noise model. Our techniques draw inspiration from learning theory, game theory, high-dimensional geometry, and convex analysis.


翻译:我们研究上层环境搜索,即二进制搜索的概括化,它捕捉了地貌动态定价等环境。标准的游戏理论配方假定代理人按照特定的行为模式行事。然而,在实践中,一些代理人可能不认同主要的行为模式,或可能采取似乎不合理的方式。现有的算法在很大程度上取决于行为模式是否(大约)准确适用于所有代理人,即使有少数这种任意不合理的代理人,其性能也很差。当一些代理人的行为方式与基本的行为模式不一致时,我们开始研究背景搜索。特别是,我们提供了两种算法,一种基于多层面的二进制搜索方法,一种基于梯度下降。我们表明,这些算法在没有非理性的代理人及其性能的情况下,几乎实现了最佳的遗憾保证,这些代理人的数量与此类代理人的数量相比优异,为在任何对抗性噪音模型中进行背景搜索提供了初步结果。我们的技术从学习理论、博学理论、高尺度的几何学和康韦克斯分析中得到灵感。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
已删除
将门创投
5+阅读 · 2018年2月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
4+阅读 · 2021年10月19日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
已删除
将门创投
5+阅读 · 2018年2月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员