Parameter estimation is an important sub-field in statistics and system identification. Various methods for parameter estimation have been proposed in the literature, among which the Two-Stage (TS) approach is particularly promising, due to its ease of implementation and reliable estimates. Among the different statistical frameworks used to derive TS estimators, the min-max framework is attractive due to its mild dependence on prior knowledge about the parameters to be estimated. However, the existing implementation of the minimax TS approach has currently limited applicability, due to its heavy computational load. In this paper, we overcome this difficulty by using a gradient boosting machine (GBM) in the second stage of TS approach. We call the resulting algorithm the Two-Stage Gradient Boosting Machine (TSGBM) estimator. Finally, we test our proposed TSGBM estimator on several numerical examples including models of dynamical systems.
翻译:暂无翻译