We introduce the concept of leakage-robust Bayesian persuasion. Situated between public persuasion [KG11, CCG23, Xu20] and private persuasion [AB19], leakage-robust persuasion considers a setting where one or more signals privately sent by a sender to the receivers may be leaked. We study the design of leakage-robust persuasion schemes and quantify the price of robustness using two formalisms: - The first notion, $k$-worst-case persuasiveness, requires a scheme to remain persuasive as long as each receiver observes at most $k$ leaked signals. We quantify the Price of Worst-case Robustness (PoWR$_k$) -- i.e., the gap in sender's utility as compared to the optimal private scheme -- as $\Theta(\min\{2^k,n\})$ for supermodular sender utilities and $\Theta(k)$ for submodular or XOS utilities, where $n$ is the number of receivers. This result also establishes that in some instances, $\Theta(\log k)$ leakages are sufficient for the utility of the optimal leakage-robust persuasion to degenerate to that of public persuasion. - The second notion, expected downstream utility robustness, relaxes the persuasiveness and considers the impact on sender's utility when receivers best respond to their observations. By quantifying the Price of Downstream Robustness (PoDR) as the gap between the sender's expected utility over random leakage patterns as compared to private persuasion, we show that over several natural and structured distributions of leakage patterns, PoDR improves PoWR to $\Theta(k)$ or even $\Theta(1)$, where $k$ is the maximum number of leaked signals observable to each receiver across leakage patterns in the distribution. En route to these results, we show that subsampling and masking are general-purpose algorithmic paradigms for transforming private persuasion signaling schemes to leakage-robust ones, with minmax optimal loss in the sender's utility.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年12月9日
Arxiv
14+阅读 · 2021年7月20日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
Arxiv
15+阅读 · 2019年11月26日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
10+阅读 · 2021年12月9日
Arxiv
14+阅读 · 2021年7月20日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
Arxiv
15+阅读 · 2019年11月26日
Arxiv
11+阅读 · 2018年4月8日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员