To perform counterfactual reasoning in Structural Causal Models (SCMs), one needs to know the causal mechanisms, which provide factorizations of conditional distributions into noise sources and deterministic functions mapping realizations of noise to samples. Unfortunately, the causal mechanism is not uniquely identified by data that can be gathered by observing and interacting with the world, so there remains the question of how to choose causal mechanisms. In recent work, Oberst & Sontag (2019) propose Gumbel-max SCMs, which use Gumbel-max reparameterizations as the causal mechanism due to an intuitively appealing counterfactual stability property. In this work, we instead argue for choosing a causal mechanism that is best under a quantitative criteria such as minimizing variance when estimating counterfactual treatment effects. We propose a parameterized family of causal mechanisms that generalize Gumbel-max. We show that they can be trained to minimize counterfactual effect variance and other losses on a distribution of queries of interest, yielding lower variance estimates of counterfactual treatment effect than fixed alternatives, also generalizing to queries not seen at training time.
翻译:为了在结构因果模型中进行反事实推理,人们需要了解因果机制,这种机制提供将有条件分布成噪音源的因数和确定性功能的因数,为样品绘制噪音的实现情况;不幸的是,通过观察和与世界互动可以收集的数据并不独特的因果机制,因此仍然存在着如何选择因果机制的问题;在最近的工作中,Oberst & Sontag (2019年) 提议使用 Gumbel-max 的因果机制作为因应因数机制,因为Gumbel-max 重新计数法是直观的反事实稳定财产;在这项工作中,我们主张选择一种最佳的因果机制,即在估计反事实治疗效果时尽量减少差异等量化标准;我们提出一个总体化的因果机制的参数组合,将Gampbel-max(2019年) 普遍化;我们表示,可以培训这些机制,以尽量减少在分配利息时出现的实际差异和其他损失,从而产生比固定的替代方法更低的差异估计反事实治疗效果,并概括在培训时不见的询问。