Quantum LDPC codes are a promising direction for low overhead quantum computing. In this paper, we propose a generalization of the Union-Find decoder as adecoder for quantum LDPC codes. We prove that this decoder corrects all errors with weight up to An^{\alpha} for some A, {\alpha} > 0 for different classes of quantum LDPC codes such as toric codes and hyperbolic codes in any dimension D \geq 3 and quantum expander codes. To prove this result, we introduce a notion of covering radius which measures the spread of an error from its syndrome. We believe this notion could find application beyond the decoding problem. We also perform numerical simulations, which show that our Union-Find decoder outperforms the belief propagation decoder in the low error rate regime in the case of a quantum LDPC code with length 3600.
翻译:Qantum LDPC 代码是低高压量计算的一个很有希望的方向。 在本文中, 我们提议将 Union- Find 解码器作为量子 LDPC 代码的解码器。 我们证明这个解码器纠正了A, phalpha} 中某些A, phalpha} > 0 等不同种类的量子 LDPC 代码, 如任何维度的toric 代码和双曲代码 D\geq 3 和量子扩展代码。 为了证明这一结果, 我们引入了一个覆盖半径的概念, 以测量其综合体的错误扩散。 我们相信这个概念可以找到解码问题以外的应用 。 我们还进行了数字模拟, 这表明我们的 Union- Find 解码器在3600 长的量子 LDPC 代码中超越了低误率系统中的信念。