Open-world learning is a problem where an autonomous agent detects things that it does not know and learns them over time from a non-stationary and never-ending stream of data; in an open-world environment, the training data and objective criteria are never available at once. The agent should grasp new knowledge from learning without forgetting acquired prior knowledge. Researchers proposed a few open-world learning agents for image classification tasks that operate in complex scenarios. However, all prior work on open-world learning has all labeled data to learn the new classes from the stream of images. In scenarios where autonomous agents should respond in near real-time or work in areas with limited communication infrastructure, human labeling of data is not possible. Therefore, supervised open-world learning agents are not scalable solutions for such applications. Herein, we propose a new framework that enables agents to learn new classes from a stream of unlabeled data in an unsupervised manner. Also, we study the robustness and learning speed of such agents with supervised and unsupervised feature representation. We also introduce a new metric for open-world learning without labels. We anticipate our theories and method to be a starting point for developing autonomous true open-world never-ending learning agents.
翻译:开放世界的学习是一个问题,即自主机构从非静止和永无止境的数据流中探测到它所不知道的事物,并在一段时间里从这些事物中从一个非静止和永无止境的数据流中学习;在开放世界环境中,培训数据和客观标准永远无法同时提供。该代理人应当从学习中获取新知识,同时不忘记先前获得的知识。研究人员提议了一些开放世界的学习工具,用于在复杂情景中操作的图像分类任务。然而,开放世界的所有先前工作都有标记数据,以便从图像流中学习新类。在自主机构在接近实时时或在通信基础设施有限的领域作出反应的情景中,人类数据标签是不可能的。因此,受监督的开放世界学习工具对于这种应用来说不是可推广的解决办法。我们在这里提出了一个新的框架,使代理人能够以不受监督的方式从无标签数据流中学习新类。此外,我们研究这些具有监督和不受监控特征代表的代理人的强大性和学习速度。我们还为开放世界的学习引入新的指标。我们预计我们的理论和方法将永远成为发展真正的自主学习的起点。