We initiate the study of finite characterizations and exact learnability of modal languages. A finite characterization of a modal formula w.r.t. a set of formulas is a finite set of finite models (labelled either positive or negative) which distinguishes this formula from every other formula from that set. A modal language L admits finite characterisations if every L-formula has a finite characterization w.r.t. L. This definition can be applied not only to the basic modal logic K, but to arbitrary normal modal logics. We show that a normal modal logic admits finite characterisations (for the full modal language) iff it is locally tabular. This shows that finite characterizations with respect to the full modal language are rare, and hence motivates the study of finite characterizations for fragments of the full modal language. Our main result is that the positive modal language without the truth-constants $\top$ and $\bot$ admits finite characterisations. Moreover, we show that this result is essentially optimal: finite characterizations no longer exist when the language is extended with the truth constant $\bot$ or with all but very limited forms of negation.
翻译:我们开始研究模式语言的有限特性和确切的可学习性。 对模式公式 w.r.t. 的有限特性, 一组公式的有限特性, 是一组限定性模型( 标签为正或负), 将这一公式与所有其他公式区别开来。 一个模式语言 L 承认了有限特性, 如果每个L- 公式都有有限的特性 w.r.t.L.。 这个定义不仅可以适用于基本模式逻辑K, 还可以适用于任意的正常模式逻辑。 我们表明, 正常模式逻辑承认了有限特性( 完整的模式语言), 如果是本地表格的话。 这显示, 整个模式语言的有限特性非常罕见, 从而激发了对整个模式语言碎片的有限特性的研究。 我们的主要结果是, 积极的模式语言, 没有真象值的 $top$ 和 $\\bot $\bot 承认了限定性特征。 此外, 我们表明, 这个结果基本上是最理想的: 有限的特性, 当整个模式语言的有限特性扩展时, 将不再存在。