The numerical modeling of thin shell structures is a challenge, which has been met by a variety of finite element (FE) and other formulations -- many of which give rise to new challenges, from complex implementations to artificial locking. As a potential alternative, we use machine learning and present a Physics-Informed Neural Network (PINN) to predict the small-strain response of arbitrarily curved shells. To this end, the shell midsurface is described by a chart, from which the mechanical fields are derived in a curvilinear coordinate frame by adopting Naghdi's shell theory. Unlike in typical PINN applications, the corresponding strong or weak form must therefore be solved in a non-Euclidean domain. We investigate the performance of the proposed PINN in three distinct scenarios, including the well-known Scordelis-Lo roof setting widely used to test FE shell elements against locking. Results show that the PINN can accurately identify the solution field in all three benchmarks if the equations are presented in their weak form, while it may fail to do so when using the strong form. In the thin-thickness limit, where classical methods are susceptible to locking, training time notably increases as the differences in scaling of the membrane, shear, and bending energies lead to adverse numerical stiffness in the gradient flow dynamics. Nevertheless, the PINN can accurately match the ground truth and performs well in the Scordelis-Lo roof benchmark, highlighting its potential for a drastically simplified alternative to designing locking-free shell FE formulations.


翻译:薄壳结构的数值模型是一个挑战,它由各种限定元素(FE)和其他配方 -- -- 其中很多都带来了新的挑战,从复杂的执行到人工锁定。作为一个可能的替代方案,我们使用机器学习并推出物理化神经网络(PINN)来预测任意弯曲壳的小规模外壳反应。为此,空壳中层由一张图表描述,通过采用纳格迪的空壳理论,机械字段在卷轴协调框中产生。与典型的PINN应用不同,相应的强弱形式必须用非欧洲的域解决。我们用三种不同的方案来调查拟议PINN的性能,包括众所周知的Sordelis-Lo屋顶设置,用来测试任意弯曲的外壳外壳元素。结果显示,如果方程式以较弱的形式显示,则机械字段可以精确地在所有三个基准中确定解决方案字段。与典型的PINN应用程序不同,因此,相应的坚固或弱形式必须用非欧洲域域域域域域域域域域域域域域的固定化形式解决相应的强弱或弱形式。在三种不同的情况下,在三种不同的情景基底基底基底线上,在精确度上,在精确度上可以进行精确度上进行精确度的变变变变变变变变变变变,因此,在精确的轨变的轨变变变变的轨道上可以使,在精确度上演变的轨道上演变的精确度上演变的精确度上变的精确度上演。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
37+阅读 · 2021年2月10日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员