We propose a semi-supervised localization approach based on deep generative modeling with variational autoencoders (VAEs). Localization in reverberant environments remains a challenge, which machine learning (ML) has shown promise in addressing. Even with large data volumes, the number of labels available for supervised learning in reverberant environments is usually small. We address this issue by performing semi-supervised learning (SSL) with convolutional VAEs. The VAE is trained to generate the phase of relative transfer functions (RTFs), in parallel with a DOA classifier, on both labeled and unlabeled RTF samples. The VAE-SSL approach is compared with SRP-PHAT and fully-supervised CNNs. We find that VAE-SSL can outperform both SRP-PHAT and CNN in label-limited scenarios.


翻译:我们建议采用半监督的本地化方法,其基础是采用与变异自动电解器(VAEs)的深基因模型。在回旋环境中的本地化仍然是一个挑战,机器学习(ML)已经表明解决的希望。即使数据量很大,用于在回旋环境中监督学习的标签数量通常也很小。我们通过与变异VAE进行半监督学习(SSL)来解决这一问题。VAE接受培训,在标签和无标签RTF样本上,与DOA分类器平行,生成相对转移功能的阶段。VAE-SSL方法与SRP-PHAT和完全监督的CNN做了比较。我们发现VAE-SSL在有标签的情况下可以超越SRP-PAT和CNN。我们发现VA-SSL在有标签的情景下可以超越SRP-PAT和CNN。

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员