In machine learning, correlation clustering is an important problem whose goal is to partition the individuals into groups that correlate with their pairwise similarities as much as possible. In this work, we revisit the correlation clustering under the differential privacy constraints. Particularly, we improve previous results and achieve an $\Tilde{O}(n^{1.5})$ additive error compared to the optimal cost in expectation on general graphs. As for unweighted complete graphs, we improve the results further and propose a more involved algorithm which achieves $\Tilde{O}(n \sqrt{\Delta^*})$ additive error, where $\Delta^*$ is the maximum degrees of positive edges among all nodes.
翻译:在机器学习中,相关组合是一个重要问题,目标是尽可能将个人分成与其对等相似性相关的群体。 在这项工作中,我们在不同的隐私限制下重新审视相关组合。 特别是, 我们改进了先前的结果, 并实现了$\ Tilde{O}( n ⁇ 1.5}) 的添加值错误, 而不是一般图预期的最佳成本。 至于未加权的完整图表, 我们进一步改进了结果, 并提出了一种更具参与性的算法, 实现$\ Tilde{O}( n\ sqrt\Delta}}$的添加值错误, 即$\ Delta ⁇ $是所有节点之间最大积极边缘。