The convex closure of entropy vectors for quasi-uniform random vectors is the same as the closure of the entropy region. Thus, quasi-uniform random vectors constitute an important class of random vectors for characterizing the entropy region. Moreover, the one-to-one correspondence between quasi-uniform codes and quasi-uniform random vectors makes quasi-uniform random vectors of central importance for designing effective codes for communication systems. In this paper, we present a novel approach that utilizes quasi-uniform random vectors for characterizing the boundary of the almost entropic region. In particular, we use the notion of quasi-uniform random vectors to establish looseness of known inner bounds for the entropy vectors at the boundary of the almost entropic region for three random variables. For communication models such as network coding, our approach can be applied to design network codes from quasi-uniform entropy vectors.
翻译:准统一随机矢量对准统一随机矢量的共聚点封闭与对准统一随机矢量的封闭相同,因此,准统一随机矢量构成一个重要的随机矢量类别,以说明对正丙基区域的特点。此外,准统一代码和准统一随机矢量之间的一对一对应,使准统一随机矢量对设计通信系统的有效代码具有核心重要性。在本文中,我们提出了一个新颖的方法,利用准统一随机矢量对几乎对流区域边界进行定性。特别是,我们使用准统一随机矢量的概念,为三种随机变量确定几乎整个热带区域边界上已知的酶矢量内部界限的松散。对于网络编码等通信模型,我们的方法可以用于设计准统一昆虫区域边界的网络编码。