We introduce a new task, novel view synthesis for LiDAR sensors. While traditional model-based LiDAR simulators with style-transfer neural networks can be applied to render novel views, they fall short in producing accurate and realistic LiDAR patterns, because the renderers they rely on exploit game engines, which are not differentiable. We address this by formulating, to the best of our knowledge, the first differentiable LiDAR renderer, and propose an end-to-end framework, LiDAR-NeRF, leveraging a neural radiance field (NeRF) to enable jointly learning the geometry and the attributes of 3D points. To evaluate the effectiveness of our approach, we establish an object-centric multi-view LiDAR dataset, dubbed NeRF-MVL. It contains observations of objects from 9 categories seen from 360-degree viewpoints captured with multiple LiDAR sensors. Our extensive experiments on the scene-level KITTI-360 dataset, and on our object-level NeRF-MVL show that our LiDAR- NeRF surpasses the model-based algorithms significantly.
翻译:我们引入了一项新任务,即针对LiDAR传感器的全新视图合成。传统的基于模型的LiDAR模拟器使用样式转移神经网络可以用于渲染新视图,但它们无法在产生准确和真实的LiDAR模式方面表现出色,因为它们依赖于不可微分的游戏引擎渲染器。为了解决这个问题,我们制定了我们所知道的第一个可微分LiDAR渲染器,并提出了一个端到端的框架LiDAR-NeRF,利用神经辐射场(NeRF)来实现3D点的几何和属性的联合学习。为了评估我们方法的有效性,我们建立了一个物体中心的多视角LiDAR数据集,称为NeRF-MVL。它包含了来自9个类别的物体的观察,从多个LiDAR传感器的360度视角进行捕捉。我们在场景级别的KITTI-360数据集和我们的物体级别NeRF-MVL上进行了广泛的实验,结果表明我们的LiDAR-NeRF显著超过了基于模型的算法。