Modeling of non-rigid object launching and manipulation is complex considering the wide range of dynamics affecting trajectory, many of which may be unknown. Using physics models can be inaccurate because they cannot account for unknown factors and the effects of the deformation of the object as it is launched; moreover, deriving force coefficients for these models is not possible without extensive experimental testing. Recently, advancements in data-powered artificial intelligence methods have allowed learnable models and systems to emerge. It is desirable to train a model for launch prediction on a robot, as deep neural networks can account for immeasurable dynamics. However, the inability to collect large amounts of experimental data decreases performance of deep neural networks. Through estimating force coefficients, the accepted physics models can be leveraged to produce adequate supplemental data to artificially increase the size of the training set, yielding improved neural networks. In this paper, we introduce a new framework for algorithmic estimation of force coefficients for non-rigid object launching, which can be generalized to other domains, in order to generate large datasets. We implement a novel training algorithm and objective for our deep neural network to accurately model launch trajectory of non-rigid objects and predict whether they will hit a series of targets. Our experimental results demonstrate the effectiveness of using simulated data from force coefficient estimation and shows the importance of simulated data for training an effective neural network.


翻译:考虑到影响轨迹的动态范围广泛,其中许多可能是未知的,因此模拟非硬性物体发射和操纵是复杂的。使用物理模型可能是不准确的,因为它们不能说明未知因素以及物体在发射时变形的影响;此外,如果不进行广泛的试验,这些模型的引力系数就不可能产生;最近,数据驱动的人工智能方法的进步使得能够产生可学习的模式和系统;可取的做法是在机器人上进行发射预测模型,因为深神经网络可以说明无法测量的动态;然而,无法收集大量实验数据会降低深神经网络的性能。通过估计力量系数,可以利用公认的物理模型模型模型模型模型模型生成足够的补充数据,以人为地增加训练集的规模,从而产生改进的神经网络。在本文件中,我们为非硬性物体发射的功率系数进行了新的算法估计,可以推广到其他领域,从而产生巨大的数据集。我们为深神经网络收集大量实验数据的能力降低性能。通过估算力系数系数模型,可以利用模型精确地模拟模拟模拟模型数据,从而显示我们不精确地模拟的模型模型模型模型模型数据对模型效果进行预测的结果。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员