Computational models are increasingly used for diagnosis and treatment of cardiovascular disease. To provide a quantitative hemodynamic understanding that can be effectively used in the clinic, it is crucial to quantify the variability in the outputs from these models due to multiple sources of uncertainty. To quantify this variability, the analyst invariably needs to generate a large collection of high-fidelity model solutions, typically requiring a substantial computational effort. In this paper, we show how an explicit-in-time ensemble cardiovascular solver offers superior performance with respect to the embarrassingly parallel solution with implicit-in-time algorithms, typical of an inner-outer loop paradigm for non-intrusive uncertainty propagation. We discuss in detail the numerics and efficient distributed implementation of a segregated FSI cardiovascular solver on both CPU and GPU systems, and demonstrate its applicability to idealized and patient-specific cardiovascular models, analyzed under steady and pulsatile flow conditions.


翻译:计算模型越来越多地用于心血管疾病的诊断和治疗。为了提供可在诊所有效使用的定量热动理解,关键是要量化这些模型由于多种不确定性来源而产生的结果的变异性。为了量化这种变异性,分析师总是需要大量收集高贞洁模型解决方案,通常需要大量的计算努力。在本文中,我们展示了明确的实时混合心血管求解器如何在隐含时间算法的令人尴尬的平行解决方案方面带来优异的性能,隐含式算法是非侵扰性不确定性传播的内向循环模式的典型。我们详细讨论在CPU和GPU系统中隔离的FSI心血管求解器的数字和高效分布实施,并展示其对理想化和针对病人的心血管模型的适用性,在稳定和脉冲流动条件下进行分析。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
已删除
将门创投
4+阅读 · 2018年6月1日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
已删除
将门创投
4+阅读 · 2018年6月1日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
Top
微信扫码咨询专知VIP会员