Multiplexed immuno-fluorescence tissue imaging, allowing simultaneous detection of molecular properties of cells, is an essential tool for characterizing the complex cellular mechanisms in translational research and clinical practice. New image analysis approaches are needed because tissue section stained with a mixture of protein, DNA and RNA biomarkers are introducing various complexities, including spurious edges due to fluorescent staining artifacts between touching or overlapping cells. We have developed the RRScell method harnessing the stochastic random-reaction-seed (RRS) algorithm and deep neural learning U-net to extract single-cell resolution profiling-map of gene expression over a million cells tissue section accurately and automatically. Furthermore, with the use of manifold learning technique UMAP for cell phenotype cluster analysis, the AI-driven RRScell has equipped with a marker-based image cytometry analysis tool (markerUMAP) in quantifying spatial distribution of cell phenotypes from tissue images with a mixture of biomarkers. The results achieved in this study suggest that RRScell provides a robust enough way for extracting cytometric single cell morphology as well as biomarker content in various tissue types, while the build-in markerUMAP tool secures the efficiency of dimension reduction, making it viable as a general tool in the spatial analysis of high dimensional tissue image.
翻译:需要新的图像分析方法,因为与蛋白质、DNA和RNA生物标志混合体组成的组织部分正在引入各种复杂因素,包括由于在触摸或重叠的细胞之间使用荧光涂色工艺或相互重叠的细胞而导致的假边缘。我们开发了RRS细胞方法,利用细胞随机反应种子(RRS)算法和深神经学习U-net来精确和自动地从一个百万个细胞组织部分中提取基因表达的单细胞解析图谱图谱。此外,由于使用多元学习技术UMAP用于细胞苯型集束分析,AI驱动的RRS细胞已经配备了一个基于标记的图像细胞测深分析工具(marterUMAPAP),用于量化利用生物标志随机反应种子(RRSS)图像和生物标志混合物对细胞型的空间分布进行量化。这项研究的结果表明,RRScell提供了一种足够强大的方法,用来在细胞细胞组织结构结构结构图谱中精确地绘制基因特征图象图象图象图象图象图象图象图象图象图象图象图象图象图象图象图象图象图象图象图象,同时进行安全地进行生物测算分析,同时将各种图象标记结构图象结构图象结构图象结构图象结构图象结构图象结构图象结构图象结构图象结构图象结构图象结构图象学分析,以降低。