This paper describes a simple technique to analyze Generative Adversarial Networks (GANs) and create interpretable controls for image synthesis, such as change of viewpoint, aging, lighting, and time of day. We identify important latent directions based on Principal Components Analysis (PCA) applied either in latent space or feature space. Then, we show that a large number of interpretable controls can be defined by layer-wise perturbation along the principal directions. Moreover, we show that BigGAN can be controlled with layer-wise inputs in a StyleGAN-like manner. We show results on different GANs trained on various datasets, and demonstrate good qualitative matches to edit directions found through earlier supervised approaches.
翻译:本文描述了一种简单的方法,用于分析创造反逆网络(GANs),并为图像合成建立可解释的控制,例如观点的改变、老化、照明和时间等。我们根据主要组成部分分析(PCA)在潜在空间或特征空间中应用,确定了重要的潜在方向。然后,我们展示了大量可解释的控制可以通过沿主要方向的分层扰动来定义。此外,我们展示了BigGAN可以用与SysteleGAN相似的方式的分层输入来控制。我们展示了在各种数据集方面受过培训的不同GANs的结果,并展示了在质量上与先前监督方法中发现的方向相匹配的编辑方法。