Classifying research papers according to their research topics is an important task to improve their retrievability, assist the creation of smart analytics, and support a variety of approaches for analysing and making sense of the research environment. In this paper, we present the CSO Classifier, a new unsupervised approach for automatically classifying research papers according to the Computer Science Ontology (CSO), a comprehensive ontology of re-search areas in the field of Computer Science. The CSO Classifier takes as input the metadata associated with a research paper (title, abstract, keywords) and returns a selection of research concepts drawn from the ontology. The approach was evaluated on a gold standard of manually annotated articles yielding a significant improvement over alternative methods.
翻译:根据研究课题对研究论文进行分类是一项重要任务,目的是提高研究论文的可检索性,协助创造智能分析,支持各种分析和理解研究环境的方法,在本文中,我们介绍CSO分类器,这是根据计算机科学本体学(CSO)自动分类研究论文的一个新的不受监督的新办法,这是计算机科学本体学领域再研究领域综合目录,CSO分类器将与研究论文有关的元数据(标题、摘要、关键词)作为投入,并返回从本体学中摘取的一些研究概念,根据手动注释文章的黄金标准对这种方法进行了评价,从而大大改进了替代方法。