In this paper a functionality taxonomy for document search engines is proposed. It can be used to assess the features of a search engine, to position search engines relative to each other, or to select which search engine 'fits' a certain situation. One is able to identify areas for improvement. During development, we were guided by the viewpoint of the user. We use the word `search engine' in the broadest sense possible, including library and web based (meta) search engines. The taxonomy distinguishes seven functionality areas: an indexing service, user profiling, query composition, query execution, result presentation, result refinement, and history keeping. Each of these relates and provides services to other functionality areas. It can be extended whenever necessary. To illustrate the validity of our taxonomy, it has been used for comparing various document search engines existing today (ACM Digital Library, PiCarta, Copernic, AltaVista, Google, and GuideBeam). It appears that the functionality aspects covered by our taxonomy can be used for describing these search engines.


翻译:本文中提出了文件搜索引擎的功能分类法,可用于评估搜索引擎的特征,将搜索引擎相对定位,或选择搜索引擎“适合”某种情况。一个人能够确定需要改进的领域。在开发过程中,我们以用户的观点为指导。我们使用尽可能广泛的“搜索引擎”一词,包括图书馆和网络搜索引擎。分类法区分了七个功能领域:索引服务、用户特征分析、查询组成、查询执行、结果演示、结果改进和历史保存。每一个都与其他功能领域相关并提供服务。必要时可以扩展。为了说明我们的分类法的有效性,它被用来比较当今的各种文件搜索引擎(ACM Digital 图书馆、PiCarta、Copernic、AltaVista、Google和GuideBeam)。看来,我们的分类法所涵盖的功能方面可以用来描述这些搜索引擎。

0
下载
关闭预览

相关内容

分类学是分类的实践和科学。Wikipedia类别说明了一种分类法,可以通过自动方式提取Wikipedia类别的完整分类法。截至2009年,已经证明,可以使用人工构建的分类法(例如像WordNet这样的计算词典的分类法)来改进和重组Wikipedia类别分类法。 从广义上讲,分类法还适用于除父子层次结构以外的关系方案,例如网络结构。然后分类法可能包括有多父母的单身孩子,例如,“汽车”可能与父母双方一起出现“车辆”和“钢结构”;但是对某些人而言,这仅意味着“汽车”是几种不同分类法的一部分。分类法也可能只是将事物组织成组,或者是按字母顺序排列的列表;但是在这里,术语词汇更合适。在知识管理中的当前用法中,分类法被认为比本体论窄,因为本体论应用了各种各样的关系类型。 在数学上,分层分类法是给定对象集的分类树结构。该结构的顶部是适用于所有对象的单个分类,即根节点。此根下的节点是更具体的分类,适用于总分类对象集的子集。推理的进展从一般到更具体。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】实体搜索,Entity-Oriented Search,358页pdf
专知会员服务
34+阅读 · 2021年4月9日
专知会员服务
123+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
208+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
10+阅读 · 2020年4月5日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员