We study the parameterized complexity of computing the tree-partition-width, a graph parameter equivalent to treewidth on graphs of bounded maximum degree. On one hand, we can obtain approximations of the tree-partition-width efficiently: we show that there is an algorithm that, given an $n$-vertex graph $G$ and an integer $k$, constructs a tree-partition of width $O(k^7)$ for $G$ or reports that $G$ has tree-partition width more than $k$, in time $k^{O(1)}n^2$. We can improve on the approximation factor or the dependence on $n$ by sacrificing the dependence on $k$. On the other hand, we show the problem of computing tree-partition-width exactly is XALP-complete, which implies that it is $W[t]$-hard for all $t$. We deduce XALP-completeness of the problem of computing the domino treewidth. Finally, we adapt some known results on the parameter tree-partition-width and the topological minor relation, and use them to compare tree-partition-width to tree-cut width.
翻译:我们研究的是计算树形斜线的参数复杂性。 计算树形斜线的参数复杂度, 其图形参数在受约束最大度的图表上相当于树形。 一方面, 我们可以高效率地获得树形斜线的近似值: 我们展示了一种算法, 从一个美元- 垂直图$G$和一个整数美元中, 我们算出一个宽度为$G$( k ⁇ 7) 的树形分割值, 或者报告$G$的树形分割宽度大于$k$, 时间为$kçO(1)}n%2美元。 我们可以通过牺牲对$k$的依赖来改进近似系数或对$美元的依赖性。 另一方面, 我们展示了计算树形分隔线的计算问题完全是 XALP, 这意味着所有美元都是硬值的。 我们推算出在计算多米诺树形树枝上的问题中 XALP 的完整度。 最后, 我们将一些已知的近似结果调整到 参数树形- 和 树形宽度 的对比关系 。