The segmentation of histopathological whole slide images into tumourous and non-tumourous types of tissue is a challenging task that requires the consideration of both local and global spatial contexts to classify tumourous regions precisely. The identification of subtypes of tumour tissue complicates the issue as the sharpness of separation decreases and the pathologist's reasoning is even more guided by spatial context. However, the identification of detailed types of tissue is crucial for providing personalized cancer therapies. Due to the high resolution of whole slide images, existing semantic segmentation methods, restricted to isolated image sections, are incapable of processing context information beyond. To take a step towards better context comprehension, we propose a patch neighbour attention mechanism to query the neighbouring tissue context from a patch embedding memory bank and infuse context embeddings into bottleneck hidden feature maps. Our memory attention framework (MAF) mimics a pathologist's annotation procedure -- zooming out and considering surrounding tissue context. The framework can be integrated into any encoder-decoder segmentation method. We evaluate the MAF on a public breast cancer and an internal kidney cancer data set using famous segmentation models (U-Net, DeeplabV3) and demonstrate the superiority over other context-integrating algorithms -- achieving a substantial improvement of up to $17\%$ on Dice score. The code is publicly available at: https://github.com/tio-ikim/valuing-vicinity
翻译:将组织病理学整片幻灯片图像分解成肿瘤和非肿瘤类型的组织,是一项具有挑战性的任务,需要考虑当地和全球的空间背景,对肿瘤区域进行精确的分类。肿瘤组织亚型的识别使这一问题更加复杂,因为分离的锐度下降和病理学家的推理更受空间背景的指导。然而,确定详细的组织类型对于提供个性化癌症治疗至关重要。由于整个幻灯片图像的高度分辨率,现有语义分解方法(仅限于孤立的图像部分)无法处理其他内容信息。为了采取更好的背景理解的步骤,我们提议一个补接邻关注机制,从一个嵌入记忆库的补丁和嵌入隐蔽特征图的内层中查询相邻组织背景。我们的记忆关注框架(MAF)模拟了病理学家的注解程序 -- 放大和考虑周围组织背景。这个框架可以整合到任何解码分解方法中。我们评估公共乳腺癌的MAF和内部肾癌的近代号关注机制,使用著名的分解模型,在公开分解模式上展示了可获取的磁性磁度/代算法。