Typical learning-based light field reconstruction methods demand in constructing a large receptive field by deepening the network to capture correspondences between input views. In this paper, we propose a spatial-angular attention network to perceive correspondences in the light field non-locally, and reconstruction high angular resolution light field in an end-to-end manner. Motivated by the non-local attention mechanism, a spatial-angular attention module specifically for the high-dimensional light field data is introduced to compute the responses from all the positions in the epipolar plane for each pixel in the light field, and generate an attention map that captures correspondences along the angular dimension. We then propose a multi-scale reconstruction structure to efficiently implement the non-local attention in the low spatial scale, while also preserving the high frequency components in the high spatial scales. Extensive experiments demonstrate the superior performance of the proposed spatial-angular attention network for reconstructing sparsely-sampled light fields with non-Lambertian effects.


翻译:典型的基于学习的光场重建方法要求通过深化网络以捕捉输入观点之间的对应关系来构建一个大可接收域。 在本文中,我们提议建立一个空间-角关注网络,以观察非本地的光场的对应关系,并以端到端的方式重建高角分辨率光场。在非本地的关注机制的推动下,专门为高维光场数据引入了一个空间-角关注模块,以计算光场每个像素上皮层所有位置的反应,并绘制一个能捕捉角维度对应关系的注意图。我们随后提议了一个多尺度的重建结构,以便在低空间尺度上高效地实施非本地的注意,同时在高空间尺度上保留高频组件。广泛的实验表明,拟议中用于重建带非蓝贝效应的稀有光谱的光场的空间-角关注网的出色性能。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
注意力机制介绍,Attention Mechanism
专知会员服务
168+阅读 · 2019年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2021年10月14日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
注意力机制介绍,Attention Mechanism
专知会员服务
168+阅读 · 2019年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员