Typical learning-based light field reconstruction methods demand in constructing a large receptive field by deepening the network to capture correspondences between input views. In this paper, we propose a spatial-angular attention network to perceive correspondences in the light field non-locally, and reconstruction high angular resolution light field in an end-to-end manner. Motivated by the non-local attention mechanism, a spatial-angular attention module specifically for the high-dimensional light field data is introduced to compute the responses from all the positions in the epipolar plane for each pixel in the light field, and generate an attention map that captures correspondences along the angular dimension. We then propose a multi-scale reconstruction structure to efficiently implement the non-local attention in the low spatial scale, while also preserving the high frequency components in the high spatial scales. Extensive experiments demonstrate the superior performance of the proposed spatial-angular attention network for reconstructing sparsely-sampled light fields with non-Lambertian effects.
翻译:典型的基于学习的光场重建方法要求通过深化网络以捕捉输入观点之间的对应关系来构建一个大可接收域。 在本文中,我们提议建立一个空间-角关注网络,以观察非本地的光场的对应关系,并以端到端的方式重建高角分辨率光场。在非本地的关注机制的推动下,专门为高维光场数据引入了一个空间-角关注模块,以计算光场每个像素上皮层所有位置的反应,并绘制一个能捕捉角维度对应关系的注意图。我们随后提议了一个多尺度的重建结构,以便在低空间尺度上高效地实施非本地的注意,同时在高空间尺度上保留高频组件。广泛的实验表明,拟议中用于重建带非蓝贝效应的稀有光谱的光场的空间-角关注网的出色性能。