Recent research explosion on Neural Radiance Field (NeRF) shows the encouraging potential to represent complex scenes with neural networks. One major drawback of NeRF is its prohibitive inference time: Rendering a single pixel requires querying the NeRF network hundreds of times. To resolve it, existing efforts mainly attempt to reduce the number of required sampled points. However, the problem of iterative sampling still exists. On the other hand, Neural Light Field (NeLF) presents a more straightforward representation over NeRF in novel view synthesis -- the rendering of a pixel amounts to one single forward pass without ray-marching. In this work, we present a deep residual MLP network (88 layers) to effectively learn the light field. We show the key to successfully learning such a deep NeLF network is to have sufficient data, for which we transfer the knowledge from a pre-trained NeRF model via data distillation. Extensive experiments on both synthetic and real-world scenes show the merits of our method over other counterpart algorithms. On the synthetic scenes, we achieve 26-35x FLOPs reduction (per camera ray) and 28-31x runtime speedup, meanwhile delivering significantly better (1.4-2.8 dB average PSNR improvement) rendering quality than NeRF without any customized parallelism requirement.
翻译:神经辐射场(NERF)的近期研究爆炸表明,在神经网络中代表复杂场景的可能性是令人鼓舞的,NERF的一个主要缺点是其令人望而却步的推论时间:一个单像素需要询问NERF网络数百次。要解决这个问题,现有的努力主要是要减少所需的抽样点的数量。然而,迭代抽样问题仍然存在。另一方面,神经光场(NERF)在新颖的视觉合成中代表NERF的更直截了当的表示方式 -- -- 象素的形成相当于一个没有光源的单一前方传球。在这项工作中,我们展示了一个深效的MLP网络(88层)以有效学习光场。我们展示成功学习这种深度的NERF网络的关键是掌握足够的数据,为此,我们通过数据蒸馏将事先训练过的NERF模型的知识传输给人。在合成和现实世界舞台上进行的广泛实验表明,我们的方法优于其他对应的算法。在合成场上,我们实现了26-35x FLOPS-2的下降(每摄像头-B平面)和28-31同步同步质量的交付率要求。