Style transfer is the task of rewriting an input sentence into a target style while approximately preserving its content. While most prior literature assumes access to large style-labelled corpora, recent work (Riley et al. 2021) has attempted "few-shot" style transfer using only 3-10 sentences at inference for extracting the target style. In this work we consider one such low resource setting where no datasets are available: style transfer for Indian languages. We find that existing few-shot methods perform this task poorly, with a strong tendency to copy inputs verbatim. We push the state-of-the-art for few-shot style transfer with a new method modeling the stylistic difference between paraphrases. When compared to prior work using automatic and human evaluations, our model achieves 2-3x better performance and output diversity in formality transfer and code-mixing addition across five Indian languages. Moreover, our method is better able to control the amount of style transfer using an input scalar knob. We report promising qualitative results for several attribute transfer directions, including sentiment transfer, text simplification, gender neutralization and text anonymization, all without retraining the model. Finally we found model evaluation to be difficult due to the lack of evaluation datasets and metrics for Indian languages. To facilitate further research in formality transfer for Indic languages, we crowdsource annotations for 4000 sentence pairs in four languages, and use this dataset to design our automatic evaluation suite.


翻译:样式转换是将输入句重写成目标样式,同时大致保留其内容的任务。 虽然大多数先前的文献假定可以使用大型样式标签的组合体。 虽然大多数先前的文献假定可以使用大样式标签的组合体,但最近的工作(Riley等人,2021年)试图使用“few-shot”样式转换,仅使用3-10句来推断目标样式。 在这项工作中,我们认为这种低资源环境没有提供数据集:印度语言的风格转换。我们发现现有的微粒方法运行不力,而且非常倾向于逐字复制输入。我们推动了微发式转换的最先进工艺,采用了一种新的方法来模拟方言之间的风格差异。与以前使用自动和人文评价的方法相比,我们的模型在形式转移和编码添加五种印度语言方面实现了2-3x更好的业绩和产出多样性。此外,我们的方法能够更好地控制风格转换的数量,使用一个输入卡路里 knob knob 。我们报告说,有希望一些属性转换方向的质量结果,包括情感转换、文本简化、性别中性化和文本拼写拼写拼写词的拼写版本。 最终将数据转换为印度格式分析模型,我们找到了四种难的版本数据,在格式研究中的数据转换模型,最后在格式上缺乏。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
专知会员服务
90+阅读 · 2021年6月29日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员