We present DAFNe, a Dense one-stage Anchor-Free deep Network for oriented object detection. As a one-stage model, it performs bounding box predictions on a dense grid over the input image, being architecturally simpler in design, as well as easier to optimize than its two-stage counterparts. Furthermore, as an anchor-free model, it reduces the prediction complexity by refraining from employing bounding box anchors. With DAFNe we introduce an orientation-aware generalization of the center-ness function for arbitrarily oriented bounding boxes to down-weight low-quality predictions and a center-to-corner bounding box prediction strategy that improves object localization performance. Our experiments show that DAFNe outperforms all previous one-stage anchor-free models on DOTA 1.0, DOTA 1.5, and UCAS-AOD and is on par with the best models on HRSC2016.
翻译:我们提出DAFNE,这是用于定向物体探测的高级单级无锚深端网络。作为一个单级模型,它在输入图像的稠密网格上对输入图像进行捆绑式预测,在设计上结构上比较简单,而且比两阶段对等更便于优化。此外,作为一个无锚模型,它通过不使用捆绑的扣子来降低预测的复杂性。DAFNE对中枢功能进行了定向认知的概括化,任意将中枢框对低级低质量预测和中枢对角箱捆绑式预测战略来提高目标本地化性能。我们的实验显示,DAFNE在DOTA 1.0、DOTA 1.5和UCAS-AOD上的所有前一阶段无锚模型都优于前一阶段无锚模型,并且与关于HRSC2016的最佳模型相同。