Federated learning (FL) is a promising technique that enables a large amount of edge computing devices to collaboratively train a global learning model. Due to privacy concerns, the raw data on devices could not be available for centralized server. Constrained by the spectrum limitation and computation capacity, only a subset of devices can be engaged to train and transmit the trained model to centralized server for aggregation. Since the local data distribution varies among all devices, class imbalance problem arises along with the unfavorable client selection, resulting in a slow converge rate of the global model. In this paper, an estimation scheme is designed to reveal the class distribution without the awareness of raw data. Based on the scheme, a device selection algorithm towards minimal class imbalance is proposed, thus can improve the convergence performance of the global model. Simulation results demonstrate the effectiveness of the proposed algorithm.
翻译:联邦学习(FL)是一种很有希望的技术,它使大量边缘计算设备能够合作培训全球学习模式。由于隐私问题,无法为中央服务器提供设备原始数据。受频谱限制和计算能力的限制,只有一组设备可以用来培训和将经过训练的模型传输到中央服务器,以便汇总。由于所有设备之间当地数据分布不尽相同,因此随着不受欢迎的客户选择,出现阶级不平衡问题,导致全球模式的缓慢趋同率。在本文中,设计了一个估算计划,在不了解原始数据的情况下揭示阶级分布。根据这一计划,建议了一种针对最低等级不平衡的设备选择算法,从而可以提高全球模型的趋同性能。模拟结果显示了拟议算法的有效性。