Continuous Integration (CI) is a software engineering practice that aims to reduce the cost and risk of code integration among teams. Recent empirical studies have confirmed associations between CI and the software quality (SQ). However, no existing study investigates causal relationships between CI and SQ. This paper investigates it by applying the causal Direct Acyclic Graphs (DAGs) technique. We combine two other strategies to support this technique: a literature review and a Mining Software Repository (MSR) study. In the first stage, we review the literature to discover existing associations between CI and SQ, which help us create a "literature-based causal DAG" in the second stage. This DAG encapsulates the literature assumptions regarding CI and its influence on SQ. In the third stage, we analyze 12 activity months for 70 opensource projects by mining software repositories -- 35 CI and 35 no-CI projects. This MSR study is not a typical "correlation is not causation" study because it is used to verify the relationships uncovered in the causal DAG produced in the first stages. The fourth stage consists of testing the statistical implications from the "literature-based causal DAG" on our dataset. Finally, in the fifth stage, we build a DAG with observations from the literature and the dataset, the "literature-data DAG". In addition to the direct causal effect of CI on SQ, we find evidence of indirect effects of CI. For example, CI affects teams' communication, which positively impacts SQ. We also highlight the confounding effect of project age.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月2日
Arxiv
70+阅读 · 2022年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员