Recent deep learning (DL) models have moved beyond static network architectures to dynamic ones, handling data where the network structure changes every example, such as sequences of variable lengths, trees, and graphs. Existing dataflow-based programming models for DL---both static and dynamic declaration---either cannot readily express these dynamic models, or are inefficient due to repeated dataflow graph construction and processing, and difficulties in batched execution. We present Cavs, a vertex-centric programming interface and optimized system implementation for dynamic DL models. Cavs represents dynamic network structure as a static vertex function $\mathcal{F}$ and a dynamic instance-specific graph $\mathcal{G}$, and performs backpropagation by scheduling the execution of $\mathcal{F}$ following the dependencies in $\mathcal{G}$. Cavs bypasses expensive graph construction and preprocessing overhead, allows for the use of static graph optimization techniques on pre-defined operations in $\mathcal{F}$, and naturally exposes batched execution opportunities over different graphs. Experiments comparing Cavs to two state-of-the-art frameworks for dynamic NNs (TensorFlow Fold and DyNet) demonstrate the efficacy of this approach: Cavs achieves a near one order of magnitude speedup on training of various dynamic NN architectures, and ablations demonstrate the contribution of our proposed batching and memory management strategies.


翻译:最近的深层次学习模式( DL) 已经从静态网络结构转向动态网络结构, 处理网络结构改变每个示例的数据, 如变量长度、 树和图表的序列。 DL- 静态和动态声明- 现有的基于数据流的编程模型既不能轻易表达这些动态模型, 也由于数据流图的反复构建和处理以及分批执行方面的困难而效率低下。 我们展示了 Cavs, 一个以垂直为中心的编程界面, 以及动态 DL模型的优化系统实施。 Cavs 代表着动态网络结构, 是一个静态的顶端功能 $\ mathcal{ F} 和一个动态的图形, 并且自然地暴露了一个具体实例的图形( mathcal{G} ) 的配置执行机会 。 Cavs 对比了这个动态的 CNF 和 版本的演示框架 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2020新书】C++20 特性 第二版,A Problem-Solution Approach
专知会员服务
58+阅读 · 2020年4月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
【2020新书】C++20 特性 第二版,A Problem-Solution Approach
专知会员服务
58+阅读 · 2020年4月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员