For $N \geq 2$, an $N$-qubit doily is a doily living in the $N$-qubit symplectic polar space. These doilies are related to operator-based proofs of quantum contextuality. Following and extending the strategy of Saniga et al. (Mathematics 9 (2021) 2272) that focused exclusively on three-qubit doilies, we first bring forth several formulas giving the number of both linear and quadratic doilies for any $N > 2$. Then we present an effective algorithm for the generation of all $N$-qubit doilies. Using this algorithm for $N=4$ and $N=5$, we provide a classification of $N$-qubit doilies in terms of types of observables they feature and number of negative lines they are endowed with. We also list several distinguished findings about $N$-qubit doilies that are absent in the three-qubit case, point out a couple of specific features exhibited by linear doilies and outline some prospective extensions of our approach.
翻译:对于 $\ geq 2 美元, 美元- qubit doily 是一个在美元- qubit symplectic Pollar 空间中生存的折叠式。 这些折叠式与基于操作者的量子环境质量证明有关。 遵循并扩展了 Saniga 等人( 数学 9 (2021 2272) 的战略( 数学 9 ), 专门以三 ⁇ 为主, 我们首先提出数种公式, 给出任何一美元 > 2美元 的线形和二次曲线。 然后, 我们为生成所有 $- qubit doilis 提供一种有效的算法 。 使用此算法, 以 $= 4 和 $= 5 $, 我们提供了它们所具备的可观察到的种类和负线数的 。 我们还列出了一些关于 三 ⁇ 的 Ququ dibit doi 的显著结论, 我们从线形 diblish 中找出了几种具体特征, 并概述我们的方法的扩展 。