Humans can easily perceive illusory contours and complete missing forms in fragmented shapes. This work investigates whether such capability can arise in convolutional neural networks (CNNs) using deep structural priors computed directly from images. In this work, we present a framework that completes disconnected contours and connects fragmented lines and curves. In our framework, we propose a model that does not even need to know which regions of the contour are eliminated. We introduce an iterative process that completes an incomplete image and we propose novel measures that guide this to find regions it needs to complete. Our model trains on a single image and fills in the contours with no additional training data. Our work builds a robust framework to achieve contour completion using deep structural priors and extensively investigate how such a model could be implemented.
翻译:人类可以很容易地看到虚幻的轮廓和完整的零碎形状的缺失形式。 这项工作使用直接从图像中计算的深层结构前科来调查这种能力能否在卷发神经网络中产生。 在这项工作中, 我们提出了一个框架, 完成断开的轮廓, 连接支离破碎的线条和曲线。 在我们的框架中, 我们提出一个模式, 甚至不需要知道轮廓的哪个区域被消除。 我们引入一个迭接进程, 完成一个不完整的图像, 我们提出新的措施, 指导它找到它需要完成的区域。 我们的模型训练在单一图像上进行, 并在轮廓中填满, 没有额外的培训数据。 我们的工作建立了一个强大的框架, 利用深层的先前结构来完成轮廓, 并广泛研究如何实施这种模型。