In this work we propose a mathematical model that describes the orientation of ventricular cardiac fibers. These fibers are commonly computed as the normalized gradient of certain harmonic potentials, so our work consisted in finding the equations that such a vector field satisfies, considering the unitary norm constraint. The resulting equations belong to the Frank-Oseen theory of nematic liquid crystals, which yield a bulk of mathematical properties to the cardiac fibers, such as the characterization of singularities. The numerical methods available in literature are computationally expensive and not sufficiently robust for the complex geometries obtained from the human heart, so we also propose a preconditioned projected gradient descent scheme that circumvents these difficulties in the tested scenarios. The resulting model further confirms recent experimental observations of liquid crystal behavior of soft tissue, and provides an accurate mathematical description of such behavior.
翻译:在此工作中,我们提出了一个数学模型,描述了心室心脏纤维的方向。这些纤维通常被计算为某些谐和势的归一化梯度,因此我们的工作是找到这样一个向量场满足的方程,考虑到单位规范约束。所得到的方程属于法兰克-奥森液晶理论,可以为心脏纤维提供大量数学特性,例如奇点的特征。文献中可用的数值方法在人类心脏得到的复杂几何形状上计算成本高昂且不够健壮,所以我们还提出了一种预处理的投影梯度下降方案,可以在测试场景中解决这些困难。结果,该模型进一步证实了软组织液晶行为的最新实验观察,并为此类行为提供了准确的数学描述。