Score-based generative models (SGMs) are a novel class of generative models demonstrating remarkable empirical performance. One uses a diffusion to add progressively Gaussian noise to the data, while the generative model is a "denoising" process obtained by approximating the time-reversal of this "noising" diffusion. However, current SGMs make the underlying assumption that the data is supported on a Euclidean manifold with flat geometry. This prevents the use of these models for applications in robotics, geoscience or protein modeling which rely on distributions defined on Riemannian manifolds. To overcome this issue, we introduce Riemannian Score-based Generative Models (RSGMs) which extend current SGMs to the setting of compact Riemannian manifolds. We illustrate our approach with earth and climate science data and show how RSGMs can be accelerated by solving a Schr\"odinger bridge problem on manifolds.
翻译:基于分数的基因化模型(SGMs)是一种新型的基因化模型,显示了非凡的经验性表现。我们使用一种扩散,在数据中逐步增加高斯噪音,而基因化模型则是一种“疏松”过程,其方法是通过接近这种“消化”扩散的时间反射而获得的。然而,目前的SGMs提供了一种基本假设,即这些数据在带有平坦几何测量的欧几里德多元体上得到支持。这防止了这些模型用于机器人、地球科学或蛋白质模型的应用,而这种模型依赖于里曼多管上定义的分布。为了克服这一问题,我们引入了里曼尼以分数为基础的基因模型(RSGMs),将目前的SGMs扩展至紧凑的里曼多管线设置。我们用地球和气候科学数据来说明我们的方法,并表明如何通过解决在多管上的一个“Schr”断桥问题来加速RSGMs。